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Abstract. The effect of two different approaches to the environment potential on structural,
screening and lattice dynamical properties of ionic crystals is calculated using a microscopic model
recently proposed. One approach is the conventional Madelung procedure for the potential depth
and the other is based on the minimization of the total energy of the crystal. Results are presented
for the typical ionic crystals NaCl and MgO.

1. Introduction

In this paper we investigate the influence of a suitably chosen environment potential on the
dynamical and static properties of ionic crystals. Such a potential appears as an element
of our theoretical model to investigate the electronic density response, electron–phonon
interaction (EPI) and the lattice dynamics in ionic materials and in particular in the high-
temperature superconductors (HTSCs) [1, 2]. In our model description for the electronic
density response and the EPI the local part is approximated by an ab initio rigid-ion model
(RIM) taking into account ion softening as calculated from a tight-binding analysis of the
electronic bandstructure. The method of Gordon and Kim [3] is used to calculate the pair
potentials from the ionic densities.

Such a model then serves for example as a reference system for the insulating phase of
the HTSC. For a description of screening in particular in the metallic phase of the HTSC in
addition more or less localized electronic charge fluctuations (CFs) on the outer shells of the
ions are considered. While these polarization processes dominate in the metallic phase of
the HTSC [1, 2, 4] they are less pronounced in classical ionic crystals. We investigated this
problem in [5] for MgO. Especially the main deficiency of the RIM in the description of the
lattice dynamics of ionic crystal, i.e. the overestimation of the longitudinal optical frequencies,
cannot significantly be reduced by the CFs and polarization processes of dipole type (dipole
fluctuations (DFs)) are of crucial importance in this case. In order to account for this, we
have recently extended our theory to include an ab initio description of the contribution of the
dipoles to the lattice dynamics and applied it to the classical ionic crystals NaCl and MgO
[6]. It should be noted here that our ultimate goal is to apply our model based on the RIM
and extended by screening processes of CF and DF type to the insulating phase of the HTSC
which cannot be described rigorously within density functional theory (DFT) applying the local
density approximation (LDA) because the LDA predicts a metallic state for these materials.
The same is true even for the metallic optimal doped phase of the HTSC along the c-axis,
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where the charge response inside a small conelike region around this axis is insulator-like as
follows from the optical experiments [7]. See also the discussion given in [8] in this context.

In order to deal with the unstable oxygen anion in the corresponding materials which is
stabilized only by the crystalline environment, we have used in the past the Watson sphere
potential method [9], enclosing the oxygen ion in a (Watson) sphere with opposite charge.
The radius of the sphere which also determines the depth of the potential was fixed to give
the Madelung potential at the site of the oxygen ion in the crystal. This somewhat arbitrary
procedure which on the other hand has characteristic effects on the ion density and all the
resulting quantities (lattice structure, electronic polarization processes like CFs and DFs,
phonon frequencies etc) will be replaced in the present paper by a more systematic one,
minimizing the total energy of the crystal as a function of the radius or equivalently the
potential depth of the Watson sphere potential at the anion.

We present in section 2 a short review of some aspects of our theoretical model so that
the paper is sufficiently complete in itself. In section 3 we compare, using NaCl and MgO
as examples, the effects of the energy minimization procedure to determine the environment
potential on various physical quantities with the corresponding effects as obtained from the
Madelung potential approach. A summary and outlook is given in section 4. Finally, the form
of the ab initio pair potential is listed in an appendix.

2. Sketch of the theoretical model

This section deals with a brief résumé of the theory and the model. More details can be found
in our previous work [1, 2, 6]. The starting point of our considerations is the densities of the
ions represented as

ρα(�r) = ρ0
α(r) +

∑
λ

Qλρ
CF
λ (r) + �pαr̂ρ

D
α (r). (1)

ρ0
α(r) is the density of the unperturbed ion, assumed to be spherically symmetric and localized

at the sublattice α of the crystal. The second contribution in equation (1) describes the charge
fluctuations (CFs) in the electronic orbitals λ with amplitude Qλ and form factor (density
distribution) ρCF

λ (r). The last term in (1) represents the dipolar deformation of an ion α

with amplitude (dipole moment) �pα and the radial density distribution ρD
α (r). r̂ is the unit

vector in the direction of �r . The ρCF
λ (r) are approximated by a spherical average of the

orbital densities of the outer ionic shells calculated in LDA and taking self-interaction effects
(SIC) into account. For the dipole density ρD

α (r) we use the charge redistribution at an ion as
induced by a homogeneous electric field. This redistribution is calculated with a (modified)
Sternheimer method in the framework of DFT–LDA–SIC, see e.g. [6, 10].

In the next step we investigate the total energy of the crystal according to the Gordon–Kim
approach [3] assuming the density of the crystal to be given by a superposition of overlapping
densities of the individual ions. The latter are calculated within SIC–LDA [11]. Experimental
measurements of the electron density in ionic crystals confirm such an approximation by
overlapping ionic densities [12]. Introducing additionally effective ionic charges together
with the Watson sphere approach, such an approximation is also applicable to the HTSCs
[1, 2, 13].

In our model description the ion softening resulting in effective ionic charges is obtained
from a tight-binding analysis of the electronic bandstructure by calculating the orbital
occupation numbers Qµ of the µth (tight-binding) orbital in question, i.e.

Qµ = 2

N

∑
n�k

|Cµn(�k)|2. (2)
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Cµn(�k) means the µth component of the eigenvector of band n at the wavevector �k from the
first Brillouin zone and the summation in equation (2) runs over all occupied states. N denotes
the number of elementary cells in the (periodic) crystal. For NaCl and MgO we have obtained
for the effective ionic charges |Z| = 0.98 and |Z| = 1.91, respectively, while the ion-softening
effect in the HTSC is much stronger, pointing to a growing importance of covalence effects in
these materials. For La2CuO4 we find for example La2.28+, Cu1.22+, O1.42−

xy , O1.47−
z [2, 5].

The second aspect besides ion softening in the calculation of the density of the ions, namely,
the improvement of the environment potential, is the main subject of our investigations in this
paper.

Applying additionally the pair-potential approximation we obtain the following result for
the total energy in our model:

E(R, ζ ) =
∑
�aα

E�a
sα +

1

2

∑
�aα
�bβ

′
φαβ( �R �b

β − �R�a
α). (3)

The energy becomes a function of the configuration of the ions {R} and the total of the electronic
degrees of freedom (EDFs) {ζ } of the density, i.e. {Qλ} and { �pα} in equation (1). E�a

sα are the
(self-) energies of the individual ions. �a, �b denote the elementary cells in the crystal and α, β

the sublattices ( �R�a
α ≡ �R�a + �Rα). The second term in (3) gives the interaction energy Eii of

the system expressed by the sum of pair interactions φαβ( �R) between a pair of ions (α, β)

connected by the vector �R. The prime in (3) means that the self-term has to be left out in the
summation. E�a

sα as well as φαβ( �R) in general depend upon ζ via ρα; however, this relationship
has been suppressed in our notation. The explicit form of the pair potential has been given in
[6] and is also listed in the appendix of this paper.

According to the adiabatic principle, for a given ion configuration {R} the electronic
degrees of freedom {ζ } adjust such that the energy is minimized, i.e.

∂E(R, ζ )

∂ζ
= 0 (4)

for any configuration {R}. Equation (4) can be used to derive an expression for the force
constants and accordingly the dynamical matrix in the harmonic approximation:

t
αβ

ij (�q) = [tαβij (�q)]RIM − 1√
MαMβ

∑
κ,κ ′

[Bκα
i (�q)]∗[C−1(�q)κκ ′ ][Bκ ′β

j (�q)]. (5)

t
αβ

ij (�q) are the elements of the dynamical matrix at wavevector �q from the first Brillouin zone,

[tαβij (�q)]RIM denotes the contribution of the rigid ion model (RIM), Mα and Mβ represent the

masses of the ions and the quantities �B(�q) and C(�q) describe the Fourier transforms of the
coupling coefficients

�B �a�b
κβ = ∂2E(R, ζ )

∂ζ �a
κ ∂

�R �b
β

(6)

and

C �a�b
κκ ′ = ∂2E(R, ζ )

∂ζ �a
κ ∂ζ

�b
κ ′

. (7)

The derivatives in (6) and (7) have to be taken at the equilibrium positions. κ describes the
EDF (charge fluctuations and dipole fluctuations in our model) localized in an elementary cell
of the crystal. For the details of the calculation to obtain �B and C we refer to our earlier work
e.g. [1, 5, 6].



2988 C Falter et al

In the case where we take in the calculation for the ionic density a Watson sphere potential
into account in order to include approximately the influence of the crystalline environment,
the total energy of the crystal additionally depends on the corresponding Watson radii Rws or
equivalently on the depths V (0)

ws of the Watson sphere potentials.

Vws(r, V
(0)
ws ) =




V (0)
ws for r � Rws

Z

r
for r > Rws

(8)

with

Rws = Z

V
(0)
ws

. (9)

In the conventional approach we also have used so far, V (0)
ws is taken to be (minus) the Madelung

potential at the site of the ion in the crystal. In this paper we focus on a more systematic
procedure to fix Rws or V (0)

ws , respectively, by minimizing the total energy of the crystal with
respect to the radii Rα

ws or depths αV (0)
ws , i.e.

ECR = min
{αV (0)

ws }
min
{R}

E(R, ζ = 0; {αV (0)
ws }) (10)

E(R, ζ = 0; {V (0)
ws }) =

∑
�aα

E�a
sα(

αV (0)
ws ) + Eii(R, {αV (0)

ws }). (11)

The self-energies of the individual ions E�a
sα depend on the αV (0)

ws and have to be included in the
minimization procedure. The self-energy for an ion α in an external potential like the Watson
sphere potential is given by

Esα(
αV (0)

ws ) = Eα
tot (

αV (0)
ws ) − Eα

ws(
αV (0)

ws ). (12)

Here Eα
tot means the total energy of the ion in the external potential αVws and Eα

ws the
potential energy of the charge density ρα in the Watson sphere potential. In the context of
the minimization according to equations (10), (11) the change of Esα when αV (0)

ws is varied is
of particular interest.

In section 3 we will study the effect of fixing the environmental potential by energy
minimization as compared with the usual procedure via the Madelung potential on various
properties of ionic crystals. Besides the influence on the structure, ionic polarizability and
lattice dynamics we also have calculated results for the macroscopic dielectric constant, ε∞(q̂)

(q̂ = �q/q) and the transverse effective charges, ZT
α . So we supply for completeness the

expressions for these quantities within our theoretical description [6, 14].

ε∞(q̂) = lim
�q→�0

(1/(1 − v(q)χ0(�q))) (13)

with

v(q) = 4π

VZq2
(14)

and

χ0(�q) =
∑
κ,κ ′

ρκ(�q)[C−1(�q)]κκ ′ρ∗
κ ′(�q). (15)

VZ denotes the volume of the elementary cell and ρκ(�q) is the Fourier transform of ρCF
λ (r)

(charge fluctuations) and �rρD
α (r) (dipole fluctuations), respectively. The tensor of effective

charges, ZT
α , can be obtained from the equation

q̂ZT
α q̂ = lim

�q→�0

(
ε∞(q̂)

(
Zα + i

�q
q2

( ∑
κ

ρκ(�q) �Xκα(�q)
)))

(16)
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where the quantity X is related to C and B from equations (6), (7) by

X = C−1B (17)

written in symbolic notation.

3. Numerical results and discussion

In the following we illustrate the energy minimization procedure to obtain the environment
potential in the Watson sphere model taking NaCl as an example. Furthermore, we oppose
the results for various physical properties of ionic crystals as obtained from the energy
minimization with those as obtained from the conventional procedure via the Madelung
potential.

In the case of NaCl we take into account a Watson sphere potential for the Cl anion. It
should be noted that in general it is sufficient to consider environment potentials only for the
anions; the cations are largely unaffected [6]. The calculation is performed with an effective
ionic charge |Z| = 0.98 resulting from a tight-binding analysis of the electronic bandstructure
according to equation (2).

Figure 1 displays our results for the variation of the self-energy EsCl of the Cl0.98− ion as
a function of the depth V (0)

ws of the Watson sphere potential according to equation (12). The
energy has been shifted by the total energy of the Cl0.98− ion (−922.092 Ryd) as calculated
in the absence of the Watson sphere potential. For smaller values of |V (0)

ws | both ECl
tot and ECl

ws

in equation (12) decrease linearly at the same rate with increasing potential depth. For larger
|V (0)

ws |, ECl
tot deviates from linearity while ECl

ws continues to be linear resulting in an increase of
the self-energy as shown in the figure.

Figure 1. Self-energy EsCl in mRyd of the Cl0.98− ion according to equation (12) as a function of
the depth of the Watson sphere potential V (0)

ws . The energy EsCl is shifted by −922.092 Ryd which
is the total energy of the Cl0.98− ion in the absence of a Watson sphere potential.

The curve in figure 2 represents our calculated results for the interaction energy Eii

of the NaCl crystal in dependence on (−V (0)
ws ). Adding the results for the self-energy and
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Figure 2. Interaction energy Eii in mRyd of the NaCl crystal in dependence on the depth V
(0)
ws of

the Watson sphere potential at the Cl0.98− ion.

Table 1. Lattice constant, a, and depth, V (0)
ws , of the environment potential of NaCl and MgO for

the Madelung choice of the potential (Mad) and the result as obtained from the minimization of
the total energy of the crystal (Min). Expt denotes the experimental values. a is in units of Å and
V

(0)
ws in units of Ryd.

NaCl MgO

a −V
(0)
ws a −V

(0)
ws

Expt 5.593 — — 4.211 — —
Mad 5.417 (−3.2%) 0.6482 4.114 (−2.3%) 1.6778
Min 5.492 (−1.8%) 0.5282 4.111 (−2.4%) 1.6844

interaction energy according to equation (11) we obtain the total energy of the NaCl crystal
(shifted by −922.092 Ryd) as a function of (−V (0)

ws ). We find a minimum of the energy
at V (0)

ws = −0.5282 Ryd (see figure 3), which should be compared with the corresponding
value V (0)

ws = −0.6482 Ryd resulting from the Madelung potential using the experimental
lattice constant. From these calculations we extract for NaCl a marked difference between
the environment potential as obtained from the energy minimization and the conventional
Madelung procedure and the question arises of what is the influence of this difference on the
physical properties of ionic crystals.

In figure 4 we have calculated the effect on the structure of NaCl by investigating the
dependence of the lattice constant, a, as a function of (−V (0)

ws ). We find an improvement for a,
with regard to the experiment, when the environment potential from the energy minimization
is used, see also table 1.

The influence on the polarization properties of the ions can be seen by performing
calculations for the dipole polarizability α and the dipole density σD(r) (σD(r) = 4πr2ρD(r))

which are both important input quantities for the lattice dynamics and the macroscopic
dielectric properties of ionic crystals [6].
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Figure 3. Total energy of the crystal according to equations (10), (11) as a function of the potential
depth V

(0)
ws at the Cl0.98− ion. The energy has been shifted by −922.092 Ryd.

Figure 4. Lattice constant a of the NaCl crystal in units of Å as a function of −V
(0)
ws .

Figure 5 displays the dependence of the polarizability α for the Cl0.98− ion on (−V (0)
ws )

and from table 2 the corresponding values for α using the minimization or the Madelung
procedure, respectively, can be extracted. We find an increase for the polarizability and also
for the macroscopic dielectric constant ε∞ when the minimization is used for the environment
potential.

From the results for α we learn that a stronger environment potential leading in general
to an increase of the binding of the electrons at the anions and consequently to a smaller
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Figure 5. Dipole polarizability α of the Cl0.98− ion in units of Å3 as a function of −V
(0)
ws .

Table 2. The table collects the dipole polarizability α of the anion of NaCl and MgO in units of
Å3, the macroscopic dielectric constant ε∞ and the transverse effective charge ZT . Ion softening
is taken into account via effective ionic charges (±0.98 for NaCl, ±1.91 for MgO). Mad, Min,
Expt have the same meaning as in table 1.

α ε∞ ZT

NaCl
Mad 3.16 2.490 1.040
Min 3.65 2.620 1.026
Expt 2.35 1.10
MgO
Mad 2.09 3.292 1.923
Min 2.07 3.284 1.923
Expt 2.96 1.98

polarizability α of the latter is also reflected in a contraction of the dipole density σD(r) of
the anions as can be read off from figure 6. Here we have shown σD(r) of Cl0.98− for the
Madelung choice of the potential (full curves) and on the other hand for the energy minimized
case (dotted curves). The contraction in case of the more attractive environment potential
provided by the Madelung choice can be seen clearly. The broken line in the figure displays
additionally the 3p-orbital density ρ0

3p(r) (multiplied by 4πr2) of the unperturbed Cl0.98− ion
for comparison. V (0)

ws = −0.6482 Ryd has been used to calculate ρ0
3p(r).

As far as the situation for MgO is concerned, we also take ion softening in the form
of effective ionic charges into account. This gives an effective charge |Z| = 1.91, see [5].
The energy minimization method and the Madelung procedure lead in this case (accidentally)
to values of the potential depth which are virtually the same (energy minimized potential:
V (0)
ws = −1.6844 Ryd, Madelung choice of the potential: V (0)

ws = −1.6778 Ryd). Consequently,
there are practically no differences for MgO in the calculated structural and polarization
properties. The definite results are contained in the tables 1 and 2. Moreover, the results
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Figure 6. The full curve (—) represents the dipole densityσD(r)of the Cl0.98− ion for the Madelung
choice of the environment potential (V (0)

ws = −0.6482 Ryd). The dotted curve (. . . ) illustrates the
result for σD(r) when the energy minimized value (V (0)

ws = −0.5282 Ryd) is used. The broken
line (- - -) displays the 3p orbital density ρ0

3p(r) (multiplied by 4πr2) of the unperturbed Cl0.98−
ion for comparison.

for the phonon dispersion curves as calculated with our microscopic model introduced in
section 2 are nearly indistinguishable in this case. Because these curves already have been
published in [6] for the Madelung choice of the potential the results are not repeated in this
work.

As we have seen the situation is quite different for NaCl where a marked difference in the
potential depth occurs. Figure 7 contains the calculated results of the phonon dispersion curves
for NaCl in the main symmetry directions 5 ∼ (1, 0, 0), 6 ∼ (1, 1, 0) and 7 ∼ (1, 1, 1)
for the Madelung choice of the potential and figure 8 analogous curves using for the depth of
the potential the energy-minimized result. The dotted curves represent the calculated data for
the RIM, the broken curves for the RIM taking additionally charge fluctuations as screening
process into account. Finally, the full curves give the results for the RIM with charge fluctuation
and dipole fluctuations both considered as allowed polarization processes. From an inspection
of the two figures we extract that a better quality for the phonon dispersion is achieved applying
the energy-minimized form of the environment potential; in particular the longitudinal optical
phonons are improved considerably.

4. Summary

In this paper we have investigated the effect of two different approaches to the environment
potential on structural, screening and lattice dynamical properties of ionic crystals. One
approach is the conventional Madelung procedure for the potential depth and the other is
a more systematic one where the depth is calculated from the minimization of the energy
of the crystal within our theoretical model. We have considered so far NaCl and MgO as
prototypes of typical classical ionic crystals; however, our ultimate goal is the high temperature
superconductors where our theoretical model to describe the density response, electron–phonon
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Figure 7. Calculated phonon dispersion curves for NaCl in the main symmetry directions
5 ∼ (1, 0, 0), 6 ∼ (1, 1, 0) and 7 ∼ (1, 1, 1) using effective ionic charges (±0.98) as calculated
from a tight-binding analysis of the electronic bandstructure. For the Cl0.98− ion a Watson sphere
potential in the form of the Madelung potential (V (0)

ws = −0.6482 Ryd) has been applied. (. . . )
denotes the result for the rigid ion model (RIM), (- - - -) for the RIM + charge fluctuations (CF) and
(—) for the RIM + charge fluctuations + dipole fluctuations (DF). The dots in the figure indicate
the experimental data points.

Figure 8. The same as in figure 7; however, the energy-minimized result V (0)
ws = −0.5282 Ryd for

the environment potential has been used.

interaction and lattice dynamics is a realistic alternative, in particular for the insulating phase
where DFT–LDA calculations predict a metallic state. In the case of MgO both approaches
accidentally give nearly the same value for the potential depth and consequently there are no
significant differences in the calculated physical quantities. This is quite different for NaCl



Effect of environment potential on ionic crystals 2995

where marked differences for the depth of the environment potential occur. The structural
and lattice dynamical properties calculated for NaCl in the present work are better described
with the energy-minimized form of the potential, while the macroscopic dielectric constant is
slightly overestimated.
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Appendix

In the following we present the explicit form of the pair potentials φαβ( �R) in equation (3), as
given in [6]. The latter can be separated into long-range Coulomb contributions and short-range
terms as follows,

φαβ( �R) = ZαZβ

R
− (Zα �pβ + Zβ �pα)

�R
R3

+ �pα

1 − 3R̂ ⊗ R̂

R3
�pβ + KαUβ( �R) + KβUα( �R)

+Wαβ( �R) + Gαβ( �R). (A.1)

The first three terms are long-range ion–ion, dipole–ion, and dipole–dipole interactions. Zα

andZβ are the charges of the ions. ⊗ denotes the dyadic product and R̂ = �R/R. The remaining
terms in equation (A1) are short range. Kα and Kβ are the charges of the ion cores and

Uα( �R) = −
∫

dVρα(�r)
[

1

| �R − �r| − 1

R
− (�r �R)

R3

]
(A.2)

Wαβ( �R) =
∫

dV
∫

dV ′ρα(�r)ρβ(�r ′)
[

1

|�r − �r ′ − �R| − 1

R
− (�r − �r ′) �R

R3

]
(A.3)

Gαβ( �R) =
∫

dV [ρ(�r)ε(ρ(�r)) − ρα(�r)ε(ρα(�r)) − ρβ(�r − �R)ε(ρβ(�r − �R))] (A.4)

Table A1. Fit parameters α, β and γ for the short-range part of the ab initio rigid-ion pair
potentials of NaCl and MgO. β is in units of 1/aB and γ in aB . The separate contributions
KβUα(R),KαUβ(R),Gkin

αβ (R),Wαβ(R),Gxc
αβ(R) are listed from top to bottom for each ion pair

in the table. For the contributions Wαβ(R) and Gxc
αβ(R) the minus sign in equation (A.6) is valid.

α β γ α β γ

Na–Na 1.275 −1.855 −3.552 Mg–Mg 0.347 −1.712 2.741
1.275 −1.855 −3.552 0.347 −1.712 2.741

−0.057 −1.565 1.456 0.847 −1.555 0.720
1.992 −1.829 −3.462 1.228 −1.711 2.064

−6.076 −0.902 14.066 −3.435 −0.951 5.223
Na–Cl 0.648 −1.764 −0.426 Mg–O 1.139 −1.833 −0.250

4.519 −1.820 0.810 4.069 −1.954 1.211
4.575 −1.680 −0.399 3.245 −1.667 1.597
4.643 −1.792 0.788 3.821 −1.859 1.570
1.843 −1.331 0.504 0.199 −1.222 2.614

Cl–Cl 4.963 −1.821 0.791 O–O 3.685 −1.956 1.152
4.963 −1.821 0.791 3.685 −1.956 1.152
5.598 −1.423 −2.948 4.982 −1.542 −2.013
6.268 −1.685 −1.253 5.272 −1.807 −0.549
3.056 −1.099 −2.155 2.510 −1.992 −1.371
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ρ(�r) = ρα(�r) + ρβ(�r − �R). (A.5)

KαUβ( �R) yields the short-range contributions of the interaction between the core α and the
density ρβ according to equation (1). Wαβ( �R) represents the short-range Coulomb contribution
of the interaction of the density ρα with the density ρβ , and Gαβ( �R) is the sum of the kinetic
one-particle and the exchange–correlation (XC) contribution of the interaction between the
two ions.

From the φαβ( �R) the coupling coefficients defined in equations (6), (7) and the pair
potentials needed for the RIM can be calculated as discussed in [6]. The short-range part
of the rigid-ion pair potentials and the various coupling coefficients are calculated numerically
for a set of distances R between the ions. This is done for each contribution in equation (A1)
separately. The corresponding result is then described for convenience by an analytic function
of the form

f (r) = ± exp(α + βR + γ /R) (A.6)

where α, β, γ are fit parameters. As an example the results for these parameters are given in
the case of the rigid-ion pair potentials for NaCl and MgO in table A1. The results for the
coupling coefficients �B �a�b

κβ and C �a�b
κκ ′ are too numerous to be given here.
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